# Molybdenum-Doped V-P-O System

# I. Preparation and Characterization

A. RAMINOSONA, E. BORDES,\* AND P. COURTINE

Département de Génie Chimique, Université de Technologie de Compiegne, B.P. 233, 60206 Compiegne-Cedex, France

Received January 6, 1986; in revised form April 7, 1986

Attempts to prepare and to characterize new catalysts belonging to the (V–P–Mo–O) system selective in the mild oxidation of butane or butene to maleic anhydride lead to the conclusion that molybdenum can be substituted up to 7% in VOPO<sub>4</sub> phases. Thermal analysis of the hydrated precursor, XRD, ESR spectroscopies, UV–visible and IR spectroscopies of both hydrated and anhydrous solid phases obtained show that the solid solutions isostructural with VOPO<sub>4</sub> · 2H<sub>2</sub>O and  $\alpha_1$ -VOPO<sub>4</sub>, respectively, can be formulated:

 $[(VO)_{0.93}^{3+}(VO)_{0.07}^{2+}(PO_4)_{0.93}^{3-}(MoO_4)_{0.07}^{2-} \cdot nH_2O]$  (n = 1 to 2)

and

 $[(VO)_{0.93}^{3+}(VO)_{0.07}^{2+}(PO_4)_{0.93}^{3-}(MoO_4)_{0.07}^{2-}].$ 

© 1987 Academic Press, Inc.

### Introduction

Vanadium-phosphorus oxides are known as catalysts for the mild oxidation of butene and butane to maleic anhydride (1-8). Extensive work has been done on the preparative chemistry and showed that the valency of vanadium is important with regards to selectivity: the mean state of vanadium must be (4+) in the oxidation of butane and (4+, 5+) in the oxidation of butene (4-7). We have recently justified these results by showing the presence of  $\gamma$ - $(VO)_2P_2O_7$  at the steady state obtained by a topotactic decomposition of the precursor  $VOHPO_4 \cdot 0.5H_2O$  (oxidation of butane) (8, 9), while other preparations yielding mixed phases  $VOPO_4/(VO)_2P_2O_7$  are preferable for the oxidation of butene (1).

In the (V–Mo–O) system, V<sup>4+</sup> is formed in the solid solution  $(Mo_xV_{1-x})_2O_5$  (10) in which ESR and magnetic susceptibility measurements indicate the presence of V<sup>4+</sup>–O–Mo<sup>6+</sup> pairs (11); this phase is selective in the oxidation of benzene to maleic anhydride (12) whereas the VOMoO<sub>4</sub>, V<sup>4+</sup> compound, which is isostructural with  $\alpha_{II}$ -VOPO<sub>4</sub> (13), is not catalytically active.

As shown in the case of  $Co^{2+}$  or  $Zn^{2+}$ introduced in V–P–O catalysts (14, 15), the presence of V<sup>4+</sup> cannot be systematically correlated with an increase of selectivity; however, the addition of a few molybdenum atoms has been shown effective for the performance of VOPO<sub>4</sub> in the oxidation of butene (16).

Since no study of the V-P-Mo-O system exists in the literature, we have tried to make some definite compounds by means of various methods of preparation, but we

<sup>\*</sup> To whom correspondence should be addressed.

have succeeded only in the synthesis of V-P–O phases doped with a low molybdenum content following this presented preparation. These other methods consist of (i) studying the binary systems of VOPO<sub>4</sub>-VOPO<sub>4</sub>-VOMoO<sub>4</sub>, and VO MoOPO<sub>4</sub>, MoO<sub>4</sub>-MoOPO<sub>4</sub>, taking into account the isotypic structure of MoOPO<sub>4</sub>, VOPO<sub>4</sub>, and VOMoO<sub>4</sub> phases, but these phases did not appear to form even limited solid solutions; (ii) mixing directly molybdenum, vanadium, and phosphorus oxides in a liquid acid medium, followed by an evaporation; or (iii) synthesizing by thermal decomposition of pounded mixtures of oxalated and/ or ammonium salts (for example, the mixture of  $NH_4[(VO)_2C_2O_4(HPO_4)_2] \cdot 5H_2O +$  $V_2O_5 + NH_4(MoOC_2O_4)$  in stoichiometric atomic ratios of V: P: Mo). In this paper we shall emphasize the chemical preparation of the new compounds obtained, as well as their structure, which influences their reactivity in terms of their catalytic properties (17).

### Preparation

The starting material  $V_2MoO_8$  was prepared from  $V_2O_5$  and  $MoO_3$  (Merck, reagent grade) by (i) dissolution in excess hydrochloric acid followed by evaporation of the solution, drying and calcination of the residue at 580°C under  $O_2$  for 8 hr (18), or (ii) heating of stoichiometrically mixed powdered solids in a quartz crucible, sealed under vacuum, at 600°C for 1 hr (19).

The compound  $P_1$  was prepared as follows: 4.02 g of  $V_2MoO_8$  was added to an aqueous solution containing 5.75 ml of 85%  $H_3PO_4$  and this mixture was stirred under reflux for 20 hr. The color of the solution turned to reddish brown after dissolution of  $V_2MoO_8$  (6 hr). After concentration of the solution to 20 ml under 730 Torr (obtained with a vacuum water pump), the resulting green precipitate was filtered off under 30 Torr and dried at 100°C in an oven for exactly 6 hr, thus leaving it in the air for a short time before the final product  $P_1$  is obtained. The calcination of  $P_1$  in a platinum crucible, performed in a furnace at 500°C under nitrogen flow for 5 hr, yields the anhydrous compound  $P_2$ .

For a better understanding of this paper, it is necessary to define the compounds obtained. The  $P_1$  compound is the final product of this preparation. It is a hydrate containing approximately one water molecule of crystallization. This P<sub>1</sub> compound is subject to hydration when left in air for a long time, the (x) number of water molecules is between 1 and 2, and may become close to 2. This sample is called hydrated  $P_1$ . When this hydrated  $P_1$  is slightly heated, (x) decreases to 1, and after leaving the sample in air, (x) goes up to between 1 and 2. This sample is called *rehydrated*  $P_1$ . Whereas  $P_2$ is an anhydrous compound obtained from calcination of  $P_1$ ,  $P_2$  is not sensitive to rehydration.

#### Results

#### 1. Chemical Analysis

Chemical analyses were done by means of atomic spectrophotometry (Perkin– Elmer 560) and X-ray fluorescence (Tracor Northen TN 2000). X-Ray emission spectroscopy was performed using a Cameca microscope.

Atomic absorptiometry revealed the presence of Mo, P, V, checked by X-ray emission spectroscopy, and X-ray fluorescence indicated that the atomic ratio Mo/V is less than 10%: several runs reproducibly indicated that Mo/V equals 0.07 in  $P_1$  and  $P_2$ .

#### 2. Structural Analysis

2.1. X-Ray diffraction. The XRD patterns of  $P_1$  and  $P_2$  have been obtained and indexed in the tetragonal system on the ba-

TABLE I Indexation of the X-Ray Pattern of the Hydrated Compound  $\ensuremath{\text{P}}_1$ 

| <i>I/I</i> <sub>0</sub> | hkl        | $d_{\text{calcd}}$ (Å)    | $2\theta_{\text{calcd}}$ | $2	heta_{ m obs}$                                          | d <sub>obs</sub> (Å) |
|-------------------------|------------|---------------------------|--------------------------|------------------------------------------------------------|----------------------|
| 100                     | 001        | 6.850                     | 15.00                    | $15.00 \pm 0.05$                                           | 6.852                |
| 42                      | 002        | 3.425                     | 30.28                    | $30.28 \pm 0.05$                                           | 3.422                |
| 93                      | 200        | 3.105                     | 33.48                    | $33.50 \pm 0.05$                                           | 3.101                |
| 38                      | 201        | 2.828                     | 36.88                    | $36.80 \pm 0.05$                                           | 2.823                |
| 35                      | 031        | 1.981                     | 53.66                    | $53.50 \pm 0.05$                                           | 1.987                |
| 54                      | 130        | 1.963                     | 54.20                    | $54.20 \pm 0.05$                                           | 1.963                |
| 40                      | 032        | 1.771                     | 66.66                    | $66.70 \pm 0.05$                                           | 1.770                |
| 35                      | 040        | 1.552                     | 70.46                    | $70.40\pm0.05$                                             | 1.550                |
|                         | <i>a</i> : | Diffractorr<br>= 6.210 Å, | neter, Co $c = 6.82$     | $\delta K \alpha$ radiation<br>50 Å, $P_{4/n} - D_{4/n}^7$ |                      |

 
 TABLE II

 Indexation of the X-Ray Pattern of the Anhydrous Compound P2

| $I/I_0$ | $d_{\rm obs}$ (Å) | hkl | $d_{\text{caled}}$ (Å) |
|---------|-------------------|-----|------------------------|
| st      | 4.172             | 001 | 4.170                  |
| w       | 3.105             | 200 | 3.103                  |
| vst     | 3.025             | 111 | 3.023                  |
| w       | 1.976             | 012 | 1.976                  |
| vw      | 1.964             | 130 | 1.962                  |
| vw      | 1.854             | 301 | 1.853                  |
| vw      | 1.552             | 400 | 1.552                  |

a = 6.207 Å, c = 4.170 Å Seeman–Bohlin chamber, CuK $\alpha$  radiation. Relative intensity: w = weak, m = medium, st = strong, v = very.

sis of a structural isotopy with the hydrates of VOPO<sub>4</sub> (*16*, *20*, *21*) and anhydrous  $\alpha_{I}$ -VOPO<sub>4</sub>, respectively, (*22*, *23*) (Tables I and II). The cell parameters found by the leastsquares method are the following:

P<sub>1</sub>: 
$$a = 6.210$$
 Å,  $c = 6.85$  Å  
P<sub>2</sub>:  $a = 6.207$  Å,  $c = 4.17$  Å.

The XRD patterns were obtained on Seeman-Bohlin chambers (Cu $K\alpha$  radia-

tion) and on CGR Guinier camera and diffractometer (Co $K\alpha$  radiation).

2.2. Infrared and UV-visible spectra. Infrared spectra (4000-250 cm<sup>-1</sup>) were recorded on a Perkin-Elmer 451 spectrometer using the KBr disk technique. The IR spectra of P<sub>1</sub> reveal the presence of crystal water whose main bands due to O-H stretching and bending appear near 3400-1620 cm<sup>-1</sup>, respectively, and resemble the spectra of VOPO<sub>4</sub> · 2H<sub>2</sub>O (Fig. 1). When a KBr disk containing VOPO<sub>4</sub> · 2H<sub>2</sub>O is



FIG. 1. Comparison of IR spectra of (1) hydrated P1, (2) VOPO4 · 2H2O, (3) P2, (4) VOMoO4.



FIG. 2. Variation of IR spectra in terms of dehydration of VOPO<sub>4</sub>  $\cdot$  2H<sub>2</sub>O (A) and rehydrated P<sub>1</sub> (B), both leading to monohydrates when the KBr disk was heated to (1) 20°C, (2) 125°C for 15 min, (3) 30 min, (4) 3 hr, (5) 20 hr, or (6) 30 hr. (C) explicitly shows the similarity between VOPO<sub>4</sub>  $\cdot$  H<sub>2</sub>O and P<sub>1</sub> spectra.

heated at 125°C in an oven for various periods (from 15 min to 30 hr), its spectrum is modified and becomes close to the monohydrate P<sub>1</sub> spectra corresponding to B(5) and B(6) in Fig. 2. Few differences are noticed between anhydrous  $\alpha_{I}$ -VOPO<sub>4</sub> and P<sub>2</sub> (Fig. 3).

Ultraviolet-visible diffuse reflectance spectra of solid samples were obtained on a Beckman DK2A spectrophotometer from 5000 to 50,000 cm<sup>-1</sup> using MgO as the standard. Diffuse-reflectance spectra of P<sub>1</sub> and P<sub>2</sub> in UV-visible range have been performed in order to detect vanadyl (VO)<sup>2+</sup> or Mo<sup>5+</sup> species. It is very well known that absorption bands are expected in the crystal field range for such  $d^1$  compounds which are due to d-d transitions, whereas only charge transfer bands occur for V<sup>5+</sup> or Mo<sup>6+</sup> ( $d^0$ ) (Fig. 4).

### 3. Thermal Analysis

Thermogravimetric (TGA) and differential thermal analysis (DTA) were performed, respectively, on a Setaram MTB 10-8 microbalance and semimicroanalyzer M5 at various heating rates under nitrogen flow. According to DTA the water molecules of rehydrated  $P_1$  are lost in two steps at 74 and 165°C under  $N_2$  at the rate of



FIG. 3. Comparison of IR spectra of (1)  $P_2$ , (2)  $\alpha_I$ -VOPO<sub>4</sub>, and (3)  $\alpha_{II}$ -VOPO<sub>4</sub>, dehydrated in all three cases.



FIG. 4. UV-visible spectra of (1)  $P_1$ , (2)  $P_2$ , (3) VOHPO<sub>4</sub> · 0.5H<sub>2</sub>O (V<sup>4+</sup> content), (4) VOPO<sub>4</sub> · 2H<sub>2</sub>O (V<sup>5+</sup> content, with a few having a quantity of V<sup>4+</sup> due to H<sub>2</sub>O interaction).

600°C · hr<sup>-1</sup>. TGA indicates that in fact the dehydration is not completely finished until 300°C (17.7% weight loss) which corresponds to the third endothermic peak at 293°C in DTA experiments (Fig. 5). At higher temperatures under nitrogen, phases analogous to  $\alpha_{II}$ -VOPO<sub>4</sub>,  $\gamma$ -VOPO<sub>4</sub>, and (VO)<sub>2</sub>P<sub>2</sub>O<sub>7</sub> are obtained, as will be explained in a forthcoming paper.

# 4. Electron Resonance Spectroscopy (ESR)

 $V^{4+}$  ions, with  $d^1$  configuration, are paramagnetic and can be detected by ESR study. The electron resonance spectrum of  $V^{4+}$  shows a strong hyperfine contribution due to the I = 7/2 spin of the vanadium nucleus. Figure 6 presents the ESR spectra of  $P_1$  recorded at room temperature. It can be described by the axial symmetry spin Hamiltonian:

$$H = g_{\parallel}\beta H_z S_z + g_{\perp}\beta (H_x S_x + H_y S_y) + A_{\parallel}S_z I_z + A_{\perp} (S_x I_x + S_y I_y)$$

- where  $\beta$ : Bohr magneton
  - S: effective spin
  - *H*: magnetic field
  - $g_{\parallel}, g_{\perp}$ : main magnitudes of g-tensor
  - $A_{\parallel}, A_{\perp}$ : main magnitudes of the coupling constant A.

The ESR parameters characterizing the paramagnetic centers are

$$g_{\parallel} = 1.935, A_{\parallel} = 198 \text{ G},$$
  
 $g_{\perp} = 1.985, A_{\perp} = 76 \text{ G}.$ 

The ESR spectra were obtained on Varian E 09 at room temperature.

# Discussion

#### 1. Chemical Composition of $P_1$ and $P_2$

 $P_1$  compound contains approximately one water molecule and is slowly hydrated in air to become a dihydrate which crystallizes as VOPO<sub>4</sub> · 2H<sub>2</sub>O. Very carefully controlled conditions of partial pressure of H<sub>2</sub>O are needed to synthesize P<sub>1</sub> owing to the use of a water vacuum pump.

According to the experimental results, P<sub>1</sub> and P<sub>2</sub> can be understood as solid solutions of molybdenum up to 7 atom% in the V–P– O system: this value seems to correspond to a limit in the system since its chemical preparation consists of the dissolution of the starting material V<sub>2</sub>MoO<sub>8</sub> (Mo/V = 50 atom%), whereas the green precipitate obtained contains only Mo/V = 7 atom%. The ingestion of molybdenum in a lattice of  $\alpha_{I}$ -VOPO<sub>4</sub> is proved by the difference of chemical reactivity of P<sub>2</sub> and  $\alpha_{I}$ -VOPO<sub>4</sub> (24); on the other hand, X-ray emission spectroscopy still shows the presence of Mo after a



FIG. 5. TGA curve, in concordance with DTA endothermic peaks, of the hydrated  $P_1$  showing the number of water molecules of crystallization released in each step in terms of temperature variation. The presence of these two steps indicates the different types of interactions exhibited by the water molecules: one strongly linked on V<sup>5+</sup> (higher temperature) and another held by weak hydrogen-bonding to another water molecules (lower temperature).

high thermal treatment of  $P_2$  at 700°C (24). The composition of  $V_{1.08}P_{0.92}O_5$  obtained by Jordan and Calvo (25), which is isostructural with  $\alpha_{II}$ -VOPO<sub>4</sub> (26), shows that the substitution of phosphorus seems to realize up to 7 or 8 atom% of solubility in the VOPO<sub>4</sub> structure.

The question arising now is, which atom, V or P, is substituted for by the small quantity of 0.07 atom of Mo. The presence of



FIG. 6. ESR spectrum of P<sub>1</sub>.

 $Mo^{6+}$ , which is required for the electrical neutrality is assumed. According to (27), the Mo<sup>6+</sup> is thermodynamically easier to obtain if the molybdenum atom forms  $MoO_4^{2-}$ ,  $MoO_3$ , (or  $MoF_6$ ). On the other hand, in the case of the anion  $MoO_4^{2-}$ , the Mo<sup>6+</sup> is stabilized in a *tetrahedron* as in several salts such as  $Ca^{2+}$  (MoO<sub>4</sub>)<sup>2-</sup>,  $Co^{2+}(MoO_4)^{2-}$ , and as the oxisalt  $(VO)^{2+}$  $(MoO_4)^{2-}$ . This indicates that the MO is stabilized in a tetrahedral site like P in  $PO_4^{3-}$ , unless it forms MoO<sub>3</sub>, which is volatile at 600°C. As has been mentioned previously, the Mo is still detected beyond 700°C so the tetrahedral anion  $PO_4^{3-}$  is certainly substituted for by 0.07  $(MoO_4)^{2-}$ .

# 2. Reflectance Spectroscopy

Vanadyl-containing compounds are known to present well-defined absorption bands between 8000 and  $32,000 \text{ cm}^{-1}$  (28). Due to the  $C_{4v}$  distortion of the octahedral field around vanadium in VO2+, two bands at least are expected corresponding to  ${}^{2}E \leftarrow$  ${}^{2}B_{2}$  (11,000–14,700 cm<sup>-1</sup>) and  ${}^{2}B_{1} \leftarrow {}^{2}B_{2}$  $(14,800-20,400 \text{ cm}^{-1})$  transitions; a third one between 21,000 and 31,300  $\text{cm}^{-1}$  due to  ${}^{2}A_{1} \leftarrow {}^{2}B_{2}$  transition is frequently obscured by the tail of charge transfer bands. The existence of VO<sup>2+</sup> species is detected by the presence of one band with a shoulder which is due to the overlapping of the two first bands. Such a band has been effectively observed in  $P_1$  and  $P_2$  spectra (Fig. 4).

# 3. Infrared Spectroscopy

The P<sub>1</sub> and P<sub>2</sub> spectra can be compared with VOPO<sub>4</sub> · 2H<sub>2</sub>O and  $\alpha_{I}$ -VOPO<sub>4</sub>, P<sub>1</sub> and VOPO<sub>4</sub> · 2H<sub>2</sub>O spectra are very similar (Fig. 1), as P<sub>2</sub> is to  $\alpha_{I}$ -VOPO<sub>4</sub> spectra (Fig. 3). The two main points gathered from this comparison could be interpreted as follows. First, the symmetry is the same in each pair, and second, the bands assigned to the vibration of water molecules enhance the fact that P<sub>1</sub> is a hydrate. With the intention of getting more information, the comparison of the P<sub>2</sub> spectrum with  $\alpha_{II}$ -VOPO<sub>4</sub> and VOMoO<sub>4</sub> spectra has been done; the  $\alpha_{II}$ -VOPO<sub>4</sub> and P<sub>2</sub> spectra are significantly different indicating that no confusion exists between the P<sub>2</sub> spectrum and that of  $\alpha_{I}$ -VOPO<sub>4</sub> (Fig. 3). On the other hand, the spectrum of VOMoO<sub>4</sub> does not permit a better identification of the small quantity of (MoO<sub>4</sub>)<sup>2-</sup> tetrahedra in P<sub>2</sub> (and P<sub>1</sub>) (Fig. 1). Certain relevant data such as the vibration frequencies of PO<sub>4</sub>, V=O, and V-O are given in Table III.

# 4. Crystal Structure

XRD and IR spectroscopies show that rehydrated monohydrate  $P_1$  and anhydrous  $P_2$  are, respectively, isostructural with VOPO<sub>4</sub> · 2H<sub>2</sub>O and  $\alpha_{I}$ -VOPO<sub>4</sub>.

The same value "a" ~ 6.2 Å obtained for the cell parameter of P<sub>1</sub> and P<sub>2</sub> and pure VOPO<sub>4</sub> indicates that the introduction of molybdenum in VOPO<sub>4</sub>, anhydrous or hydrated, does not induce a disorder inside the layers, that is to say that the difference of size between molybdates and phosphates tetrahedron (29) cannot be correlated to the modification of "c" parameter.

On the contrary, the variation of "c" in hydrated compounds (7.4 Å in  $VOPO_4$  ·  $2H_2O$ ; 6.5 Å in VOPO<sub>4</sub> · 1H<sub>2</sub>O; 6.85 Å in hydrated  $P_1$ ) and anhydrous compounds (4.11 Å in  $\alpha_{I}$ -VOPO<sub>4</sub>; 4.17 Å in P<sub>2</sub>) accounts for the presence of  $V^{4+}$ : the decrease of "c" parameter in the hydrated  $P_1$  (6.85 Å instead of 7.40 Å) implicates a perturbation in the layer charge balance involving a decrease of the number of water molecules intercalated. Figures 5 and 7 show the different kinds of interaction exhibited by the water molecules. The presence of  $V^{4+}$  affects the Lewis base interaction between water molecules and the layer (Figs. 7a and b). In the anhydrous compound  $\alpha$ -VOPO<sub>4</sub>, layers are joined together by the interaction of the oxygen doublets of the upper vanadyl

| VOPO <sub>4</sub> · 2H <sub>2</sub> O | Rehydrated<br>P <sub>1</sub> | $\alpha_{I}$ -VOPO <sub>4</sub> | P <sub>2</sub> | α <sub>ll</sub> -VOPO <sub>4</sub> | Assignment                    |
|---------------------------------------|------------------------------|---------------------------------|----------------|------------------------------------|-------------------------------|
| 1165                                  | 1182 (sh)                    | 1140                            | 1135           | 1210                               | ( <i>v</i> <sub>3</sub> )     |
| 1087                                  | 1085                         |                                 | 1080           | 1080 (sh)                          | $\nu_{as} PO_4$               |
| 1032                                  |                              | 1010                            | 1010           |                                    | 40 4                          |
| 950                                   | 955                          | 970                             | 975            | 985                                | $\nu V = 0$                   |
| 900                                   | 915 (sh)                     | 935                             | 942            | _                                  | $(\nu_1)$                     |
|                                       | 870 (sh)                     |                                 | 870 (sh)       |                                    | $\nu_{\rm s}$ PO <sub>4</sub> |
| 685                                   | 682                          | 690                             | 690            | 622 (sh)                           | $(\nu_4)$                     |
| 565 (sh)                              | 570 (sh)                     | 567                             | 602            | 600                                | $\delta_{as} PO_4$            |
|                                       |                              |                                 | 570            | _                                  |                               |
| <u> </u>                              | <u></u>                      | 487                             | 490            | _                                  | $(\nu_2)$                     |
| —                                     |                              | 422                             | 425            |                                    | $\delta_{s} PO_{4}$           |
| 420                                   | 428 (sh)                     |                                 |                |                                    | +                             |
| 405 (sh)                              | 410                          | 395                             | 400            | 380                                | ν V—Ο                         |
| 320                                   | 335                          | 340                             |                |                                    |                               |
|                                       |                              | 330                             |                |                                    |                               |

TABLE III Assignment of IR Bands in V–P–O and V–P–Mo–O Compounds ( $\bar{\nu}$ , cm<sup>-1</sup>)

*Note*: (sh) = shoulder, O-H: VOPO<sub>4</sub> · 2H<sub>2</sub>O: 3550, 3320 cm<sup>-1</sup>; P<sub>1</sub>: 3550, 3410 cm<sup>-1</sup>.  $\delta$ O-H: VOPO<sub>4</sub> · 2H<sub>2</sub>O: 1635, 1620 cm<sup>-1</sup>; P<sub>1</sub>: 1620 cm<sup>-1</sup>.

(V=O) with the V<sup>5+</sup> (Fig. 7c), like a Lewis acid-base interaction. So, the presence of V<sup>4+</sup> in P<sub>2</sub> may perturb this bonding by its elongation (Fig. 7d).

# 5. Electron Resonance Spectroscopy

The hyperfine structure with an axial symmetry of the ESR spectrum of P<sub>1</sub> indicates that the unpaired electron remains localized mainly on a single vanadium site during the time scanning. Values of the hyperfine coupling constant  $A_{\parallel}$  and  $A_{\perp}$ , and g-parameter value of the P<sub>1</sub> compound are close to the ESR parameter values of hydrated V<sup>4+</sup>: [VO(H<sub>2</sub>O)<sub>5</sub><sup>+</sup>] (30); i.e., the site symmetry of V<sup>4+</sup> in P<sub>1</sub> is approximately  $C_{4v}$  (Table IV; Fig. 6).

Studies on the ESR lineshape evolution of  $V_2O_5$  in terms of the V<sup>4+</sup> concentration show a distinct hyperfine structure at lower concentration (about 1–2 atom% of V<sup>4+</sup>); the hyperfine structure tends to disappear with the increase of V<sup>4+</sup> concentration, narrowing the resonance line (*31*). Consequently, the ESR lineshape suggests an important relative concentration of  $V^{4+}$  in  $P_1$ .

The absence of signal characteristics of the ESR spectrum of  $Mo^{5+}$  paramagnetic centers may suggest that the oxidation state of the molybdenum is 6+.

#### Conclusion

The structural results in this paper demonstrate that molybdenum can be substituted for phosphorus up to 7 atom% in vanadyl phosphate phases as molybdate  $MoO_4^{2-}$ . To ensure the electrical neutrality,  $V^{4+}$ , is formed. This assumption is also sup-

TABLE IV Anisotropic ESR Parameters

|                                                  | $g_{\parallel}$ | g⊥    | $A_{\parallel}$ (G) | <i>A</i> ⊥ (G) | Ref. |
|--------------------------------------------------|-----------------|-------|---------------------|----------------|------|
| VO <sup>2+</sup> (H <sub>2</sub> O) <sub>5</sub> | 1.931           | 1.978 | 205.4               | 76.5           | (30) |
| $\mathbf{P}_1$                                   | 1.935           | 1.985 | 198.0               | 76.0           |      |



FIG. 7. The presence of the supplementary electron in V<sup>4+</sup> decreases the interactions R'-V<sup>5+</sup> · · ·  $|\overline{O} < R R$  Hence, a water molecule strongly linked on V<sup>5+</sup> in VOPO<sub>4</sub> · 2H<sub>2</sub>O (A) may be absent in hydrated P<sub>1</sub> (B) involving the decrease of "c" parameter. The relaxation of bonding of layers in  $\alpha_1$ -VOPO<sub>4</sub> (C) is observed in P<sub>2</sub> (D).

ported by thermal analysis of the decomposition which yields reproducibly  $P_2$  from  $P_1$ with a weight loss corresponding to the formula [VO(MoO<sub>4</sub>)<sub>0.07</sub>(PO<sub>4</sub>)<sub>0.93</sub> · H<sub>2</sub>O]. On the other hand, it can be concluded that the formula of this anhydrous compound  $P_2$  can be written as a solid solution [(VO<sub>0.93</sub><sup>3+</sup> (VO)<sub>0.07</sub><sup>2+</sup>(PO<sub>4</sub>)<sub>0.93</sub><sup>3</sup>(MoO<sub>4</sub>)<sub>0.07</sub><sup>2</sup>] which is isostructural with  $\alpha_1$ -VOPO<sub>4</sub>.

# References

1. E. BORDES AND P. COURTINE, J. Catal. 57, 236 (1979).

- H. WOLF, N. WUSTNECK, M. SEEBOTH, V. M. BELOUSOV, AND V. A. ZAZIGALOV, Z. Chem. 22, 193 (1982).
- 3. M. BRUTOVSKY AND S. GEREJ, Collect. Czech. Chem. Commun. 47, 403 (1982).
- 4. J. POLI, I. RESTA, O. RUGGERI, AND F. TRIFIRO, *Appl. Catal.* **1**, 395 (1981).
- 5. G. Centi, I. Manenti, A. Riva, and F. Trifiro, *Appl. Catal.* **9**, 177 (1984).
- 6. B. HODNETT AND B. DELMON, Appl. Catal. 6, 231 (1983).
- I. MATZUURA, 8th Int. Congr. Catalysis, Berlin preprints IV-473 (1984).
- 8. E. BORDES, J. W. JOHNSON, AND P. COURTINE, J. Solid State Chem. 55, 270 (1984).
- 9. E. BORDES AND P. COURTINE, J. Chem. Soc. Chem. Commun. 294 (1985).

- 10. H. A. EICK AND L. KIHLBORG, Acta Chem. Scand. 20, 1658 (1966).
- 11. F. Y. ROBB, W. S. GLAUNSINGER, AND P. COUR-TINE, J. Solid State Chem. 30, 171 (1979).
- D. J. COLE, C. F. CULLIS, AND D. J. HUCKNALL, J. Chem. Soc. 72, 2185 (1976).
- 13. H. A. EICK AND L. KIHLBORG, Acta Chem. Scand. 20, 722 (1966).
- 14. B. HODNETT AND B. DELMON, J. Catal. 88, 43 (1984).
- G. CENTI, F. TRIFIRÓ, A. VACCARI, G. M. PA-JONK, AND S. J. TEICHNER, Bull. Soc. Chim. Fr. 290 (1981).
- 16. E. BORDES, thesis, Compiègne, France (1979).
- P. COURTINE, "The Role of Solid State Chemistry in Catalysis," Chap. 3, p. 279, ACS Symposium Series, Amer. Chem. Soc., Washington, D.C. (1985).
- 18. J. G. EON, E. BORDES, AND P. COURTINE, C.R. Acad. Sci. Paris Ser. C 288, 485 (1979).
- 19. L. KIHLBORG, Acta Chem. Scand. 21, 2495 (1967).
- 20. G. R. TIETZE, Aust. J. Chem. 34, 2035 (1981).

- 21. G. LADWIG, Z. Anorg. Allg. Chem. 338, 266 (1965).
- 22. M. TACHEZ, F. THEOBALD, AND E. BORDES, J. Solid State Chem. 40, 280 (1981).
- 23. E. Bordes, P. Courtine, and G. Pannetier, Ann. Chim. 8, 105 (1973).
- 24. A. RAMINOSONA, thesis, Compiègne, France (1985).
- B. JORDAN AND C. CALVO, Acta Crystallogr. 832, 2899 (1976).
- 26. R. GOPAL AND C. CALVO, J. Solid State Chem. 5, 432 (1972).
- R. B. HESLOP AND P. L. ROBINSON, "Chimie Inorg.," E. S. Flammarion, Paris (1973).
- 28. R. H. J. CLARKE, "The Chemistry of Titanium and Vanadium," Elsevier, Amsterdam/New York (1968).
- 29. R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr., Sect. B 25, 925 (1969).
- 30. C. J. BALLHAUSEN AND H. R. GRAY, *Inorg.* Chem. 1, 111 (1962).
- 31. P. BARBOUX, thesis, Paris VI (1984).